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This paper is concerned with the problem of the distribution along a dam 
of hydrodynamic pressure caused by aperiodic or impulsive vibrations of 
the dam, and vertical vibrations of the ground below the liquid. The re- 
sults show that the vertical vibrations of the earth surface have a 
significant influence upon the loading of the dam during a strong as well 
as during a destructive earthquake. Formulas for the distribution of the 
dynamic fluid pressure along the dam are derived. 

The problem of the dynamic fluid pressure on a dam, caused by its 
periodic vibrations, for instance V = V. cos at. was studied in [ l-4 I , 
where Ve was the velocity amplitude of the vibrating dam. The problem of 
surface waves on a fluid which appear due to a periodic surface, or 
internal, pressure system was studied in [ 5-7 1. 

1. We shall analyze the problem of the dynamic pressure of the fluid 
on the dam, caused by vibrations of the earth surface with a velocity 
V(t), which lies in the plane Z, y  and is inclined at an angle 6 to the 
horizon. 

Assume that in rectangular coordinates x, y, z the dam and the earth 
surface are located at 1: = U,(t) and y  = U,(t) - h, respectively. ‘Ihe 
part of the space that is bounded by x>, U,(t), U,(t) - h G y <U,(t), 
and - 00 6 z < m is filled with fluid. 

Let us assume that the surface of the liquid is initially at rest. 
When the velocity potential of the fluid is denoted by 4(x, y, t) the 
initial and boundary conditions of the problem become 

1060 



Hydrodynamic pressure on a dam 1061 

3~ (3. -hh, 0) 
aY 

= I;', (0) (1.1) 

I 
2 = v, (t) at z = ul(l) = 

\ 
b', (t) dt (v,(t) = Ii (1) COP 6) (I .2) 

Ii 

at y=Ii,(t)-h (1 L3) 

1 
@‘p 

1 
-- 
at2 

L2!=0 
3 ay at y = U,(t)= 112(r) dr 

\ 
(V,(l) z V(t)sin 6) (1.4), 

;, 

'Ihe fluid velocity potential, which has to satisfy the Laplace equa- 
tion A+ = 0, can be written as follows: 

m 

0, k)c.xhk (I- I I/) + D ( w, k)sti kY] cos kX cos ot do dk 7 
0 

co 

+- otdodu 
x=z- U,(l) 
Y=y-Uci,(l) 

(1.5) 

Here A(o, a), B(o, k), and D(o, K) are arbitrary functions, and the 
function 4(x, y, t) is determined so that 

'Ihe boundary condition (1.2) will be satisfied if we choose 
co 

- 
CT aA (co, a)sinolY cosotdo da = V,(t) (l.fi) 
. .I 
0 

Introduce a new variable [= Y and rewrite (1.6) in the form 

- fl uA (0, CL) sin ac cos ot dw da = I/‘, (t) f (5) (1.7) 
where n' 

f (61 = 1 at -h,(<qO, f(C) =O at --h>5>0 

Using a Fourier expansion we obtain from the integral equation (1.7) 

A (co, a) = 4(1;;zsah)G1(~) (c,(o) =~v,,T,,os atd%) (1.8) 
b 

Because of the initial condition (1.3) we have 
0303 00 

1 cs 
D(o, k) k co sh kh cos kXdk+ 

c 
A (co, a) cos uhe-a-Yada cos ot dw = V, (1) 

0 6 1 
(1.9) 
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From this 

(1.10) 

Here 

From boundary condition (1.4) we determine the unknown function 

B (co, k) = - kgD (0, k) 2g A (co, a) a2da 
-- 

kgsinhkh - dcoshkh n s 
- (1.211 

(a2 + k2) (kgstikh- co2coshkhl 
0 

After substitution of Expressions (1.8), (l.lO), and (1.11) into 
(1.5), we obtain the sought-for velocity potential 4(x, y, t). 

1) In order to find the dynamic fluid pressure on the dam caused by 
its aperiodic vibrations we shall assume that 

V (t) = Voe-hf @ = E + irl) (1.12) 

where V,,, LJ and q are real constants. Here the velocities of the vibrat- 
ing dam V1( t) and the earth surface below the fluid V,(t) will be re- 
spectively 

VI (t) = V,e-hf, V2 (t) = V,e-“’ (V, = V. cos 6, I/, = V, sin 6) (1.13) 

15,’ (t) = \ V (7) dr = U. (1 - e-Al) 
0 

ill0 =$ 

From this, the displacement of the dam V1( t) and the earth surface 
V,(t) will be 

U, (t) = U, (1 - e-hf), U,(t) = U,(l -e-)+[) (17, = U,COS~, U2= Uosin 6) 

(1.14) 

We find from (1.12), taking into account (1.8) and (l.lO), that 

(1.15) 

Let us introduce the following notation: 
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Y(a, k, o) = (I- COS&)G,(CO)/(U~ + k2)-(kg1 sinh kh - CIP cash kh) 

S, = \T\L% Y (a, k, CO) cash k(Y + h)osinotdadkdo 
; 00 s, = Y (CL, k, o) cash k(Y + h)osinotdadkdo 

(1.16; 03 s, = sss iJY( a, k, o)k sinh k(Y +h)cosotdadkdo 
0 

co 
sax ’ sss Y (a, k, o) k sinh k (Y + h) cos ot dadkdo 

0 

When we differentiate 4(x, y, t) with respect to t for t > 0, x = 
Ul(t),we have 

O” acp 8 - 
at = It3 

sss 

(I- cos ah) cos ah 
k (aa + k’+shkh G, (0) [o sin ot sinh kY + 

0 

+ V&‘k cash kY cos ot] du dk do - 4 [S, - S, f V.&J (S, - S,)] + 

+ U,g (c-hf .- 1) - hV2Ye-kf - V22e-2A* - 

4 ’ (I- cos ah) 
l-l2 Is a2 G, (co) [o sin ot sin uY + 

0 

+ CL (V, cos uY - V, sin aY) e-At cos ot] da do (1.17) 

First let us study S,. Integration with respect to o yields 

03 

’ T = hV, 
s 

osin ot do nh 

(03 + h”) (kgsinhkh - otoshkh) = T  VI 

,-Xl - cos I/kgtanhkh t 
kgstikh + h%o&kh 

(1.18) 
0 

Introduce the notation M, = \/[ kg tanh (kh) 1. ‘Ihe substitution of 
(1.18) into the expression for S, in (1.16) yields 

where 
s, = $ v, (X,6?-A’ - R,) (1.19) 
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R, = ?(I- 
SI 

cos uh) cos ahcoshk (Y ‘+ h) da dk 

(~2’ j- k”) (kgsinhkh f h2coshkh)coshkh 
0 

R 
2 

= O” (I - cos ah) cos ahcoshk (Y + h) cos M,t da dh 

1s (a2 + k2) (kgsitikh + &oshkh)coshhh 
0 

Since the integrals (1.19) converge uniformly with respect to a and 
k, we may change the order of integration, i.e. we shall integrate at 
first with respect to k. Rewrite R, in the following form: 

co 
R, = 

s 
(1 - cos uh) cos ah CM?,* 

pl*=yo 

(1.20) 

wshk(Y+h)dk -j 

(a2 + k2) (kgstikh + h2coshkh)coshkh / 
0 

R,* will be calculated by the use of 
the theory of residues. In the complex 
plane we have two roots rtia and an in- 
finite number of roots f i mn/2 h, where 
m = 1, 3, 5, . . . . for the equations a2 + 

‘+--g.~-$ u 

k* = 0 and cash (kh) = 0, respectively. 
‘.\ 

.__ 
\y-I.Y?~ 

In order to find the roots of the trans- 
cendental equation kg sinh (kh) + A* 

,'~;g-- 

\d 
-.- 

cash (kh) = 0 we shall introduce a new 
variable kh = y and transform this equa- Fig. 1. 

tion to 

rthr=p (p = - h’ll /g = (q2 - g” - i2qq h / g) (1.21) 

Using the confonnal transformation 

w = f (2’) = z’tanh 2’ (w = u + iv, 2’ = 5’ + if) (1.221, 

we have 
U= 

x’sinh2x’ -‘y’ sin 27~’ 

cos 2y’ +cosh2x ’ 
2, = yOid3 22’ + x’ sin 27~’ 

COS 2y’ +cosh2X’ 
(1.23) 

From Formula (1.20) and Figs. 1 and 2, it can be seen that the mapping 
(1.22) transforms the parallel lines f nn/4, where II= 1, . . . . 8, in 
the z'-plane into curves in the w-plane. With the aid of these figures, 
with a known ,u, we shall find the roots of Equation (1.21) in the z'- 
plane, which corresponds to point p in the w-plane. Besides, we obtain 
by means of successive approximations from Formulas (1.21) and (1.23) the 
unknown y with the necessary degree of accuracy. We see from Figs. 1 and 
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2 and Formula (1.23) that Fquation (1.21) has the following roots: when 
p is a complex constant there 

AY’ B 
are several complex roots (two, 
four, etc. ) ; for p < 0 there is 
an infinite number of imaginary 
roots; for p > o there are two 
real roots and an infinite 

---i number of imaginary roots; when 
/L is an imaginary constant there 
are several complex roots. ‘Ihe 
equality 4‘ = 7 corresponds to 
the last case. 

As an example, let us assume 
that e< 7, and that point p is 
located as shown in Fig. 1. 

Fig. 2. 
After a number of integrations 

we find 

R 
1 

= _ i ““h (1 -coshd h (Y + h) 1 hl 
2 g 1-r* - (1 + CL) PI-n T 

e--Y + $- 
m (l- 

s 

cos ah) r.os a (Y + h) da 

a (h2 cos ah - ag sin ah) + 

0 

cosg;‘;.j/;;‘; ah (1 - cos ah) da (7 = P---9 j 
.C=mn/2h 

(l.24) 

Here p and q are 

Returning to the 
J’ 

(0 

-a- u X 

Fig. 3. 

real constants. 

:omputation of R,, we analyze the integral 
00 

Rz*= 
s 

cash k (Y + h) cos M, f dk 

(a2 + k*) (kgsinhkh + h%o&h)coshkh 
(1.25) 

0 

For the evaluation of this integral, we choose 
three auxiliary functions 

F, (2’) = 
cash z’ (Y + h) exp fiilil, fz’) 11 

(a2 + z “) (z’gsinhz’h + h2c,,hz’h)coshz’h 

F, (z’) = cos z’ (Y + h) esp [- M, (z’) t] 

(a2 - z ?) (A2 cos z’h - z’g sin z h) cosa’h 
(1.26) 

F, (2’) = cosz’(Y + h) exp [AJO f] 

(a2 - z 2, (A* cos z’h - z’g sin z’h) cosz’h 

and the corresponding contours, shown in Fig. 3, 
where contour (1) lies in plane 1 (Fig. 2) and 
contours (2) and (3) lie in plane l’, which can 
be obtained from plane 1 by a mapping of (x’, y’) 
onto (- y’, x’) and a 9OOclockwise rotation. 
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Here we have two roots f iy in the transformed plane corresponding to 
the equation X2 cos z’h - z’g sin z’h = 0. 

Before we go into the contour integration we shall study the multi- 
valued functions 

-- 
M, (2') = 1~z'gtanhz'h, M, (2’) = J’+ tan Z’/L (1.27) 

By expanding tanh (z'h) and tan (z'h) in terms of infinite products 

-I’X = x f f  (1+ -&) 
Tl=l I 

fi (1+ (@& ..L) 
n=o ’ 

‘an x = x jy (I- Y&) 
ll=1 i 

(1.28) 

5 (I- (Xn :“1;2 nz) 
n=o 

where x= z’h, we obtain 

(1.29) 

where C,, b,, al, b,, a2 are real constants, and a,+ I = (n + 1) r/h, 
b” = (2n+ 1) n/2h. w e see from this that the function M,(t') has an in- 
finite number of branch points on the imaginary axis, and M,(z'l has 
similar points, except that they appear on the real axis. 

Plane z' will be cut as shown in Fig. 2. After that, the functions 
M,(z’J and M,(z’) will be single-valued inside the corresponding contour 
in the multiply-connected region. Let 

Ml* (2’) = M, (2’) / 2’ 

'Ihe values of the arguments on the left and the right edge of the cuts 
along the positive imaginary axis will be respectively 

arg M,* (2’) = 3 [- + n--($n-2n)+o+o+...]+n 

argM,*(z’)=$(--~---~+f+o+...)=-~n 

Therefore the function M,*(z’) along the left and the right edges has 
the multipliers + i and - i, respectively, in front of the root. In an 
analogous manner we determine arg M,*( z') along the corresponding edges 
of the segments located along the negative imaginary axis (Fig. 2). 



Hydrodynamic pressure on a dam 1067 

Note that during the integrations along the contours (1) and (3) the 
paths followed the directions shown by the arrows in Fig. 2, and along 
contour (2) the integration proceeded clockwise. By applying the residue 
theorem we obtain 

$ Fl (z’) dz’ = 2R,* + iN, + illrg + 
(l)I 

(1.30) 

( $ F, (2’) dz’ = 2N, + “I\‘, -I- H, + 
(2) I’ 

+ i Iim \ F, (z’) dz’ = N* (e’b’ - e--).I) + f2* (a, Y, t) 
n=o r-O C,.(i) 

F, (z’) dz’ = - i2R,* + H, -k 
(3) I’ 

+ j. hy \ F, (z’, dz’ -t f3* (a, Y, t) = - N*e-“l 

c ” r(n) 

Here 

cos k (Y + h) exp (--i M,f) dk 

(a2- k”)(h” cos kh - kg sin kh) cos kh 
n=o b,, 

j)T* = 2nTh2-h[T (y + h) / hl _. 
g (a2h2 + r2) r (7, IL) Gosh’ r ’ 

M, = I/kgtan kh, r (7, P) = r2 - (1 + P)P 

where f,*(a, Y, t) are some functions of a, Y and t, where u = 1, 2, 3. 

Of course, all integrals along the large circles are equal to zero 
when their radii tend to bo. Let us study the integrals under the sunxna- 
tion signs in Formulas (1.30) and integrate them along the small circles 

C r(n; and CrfnF. 

As the radii of the circles tend to zero we have 
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5 lim 
r-+0 

\ FI (~7 dz’ 
n=o c ’ r (n) 

(1.31) 

-3=/Z 

C, lim 
?a=0 

r-O 1 e~p[--(jl-i)ell’(~)]dp 
z/2 

co -y2 c (2) 
=- i2 2 C,lim 

1 [ 
esp --(cosx-isinx) dx+O 

r-0 j; I 
n=o z/g 

Here C,, C,(l), and C,(*) are some positive constants, p and K are 
arguments. In the same manner one can prove that 

i lim \ F, (2’) i&z’ 3 0, i lim \ F3(z’) dz’+O (I .32) 
n=o r+o ’ ” c ?I=0 p-ro r (n) c r (n) 

Note that 

F, (2’) clz’ = i2 5 C, lim -r esp [---- 
.c,(l) 

r-0 n=o -12 
6 (cosx 

Hz = $J lim \ F, (z’) clz’ = 
n=o r-+o c,;;, 

isinx) dx. 
1 

(1.33) 

= -i 5 C, lim \ esp [i $ CSp (-A$-)] dp = - HI 
n=o r-0 * 

2x 

From the system of equations (1.30) and the relations (1.31), (1.32), 
and (1.33) we find the required integral 

R2* = - iiV*e”l / 2 + j* (a, Y, t) (1.34) 

After substituting (1.34) and (1.24) into Formula (1.19) and carrying 
out the R2-integration with respect to a, we obtain 

s1 = if Me-TV, pr~~h~~~s~cosh[~ (Y + IL)] + e -xl r jl (a, Y) da + 
> OS i, 

CQ m  

a, Y, t)da + $ he-W, \ 
* 

2 cosgCC(~~J~C~‘h (I--cosah)da (1.33) 
0 0 m=l,3 
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In the same manner we find (1.36) 

s 
2 
= i ~ hhT/‘C”“hI’ (Y i h)/hl 

2 l gr c-r* cL)cow 
(l-e-y)~hhhl+e-~f~~l(n,Y)da+~fz(a,Y,t)dct 

0 0 

co 

+ij&x, Y, t)da -,-+T,p 5 sin Cg;ya:-gah (1 - cos U/l) clct 
0 0 m=1,3 

(I-e-y)corhht+e-“f~fs(C1l Y)da+yi,(a, Y,t)dil 
0 0 

After substituting Formulas (1.35) and (1.36) into (1.17) and evaluat- 
ing the remaining integrals, we obtain finally 

- hV2Ye-“f - (V12 + V,*) e -2xf + lJ,g (emA1 - 1) (1.37) 

for t > 0, Y < 0, and x = U,(t). In the same manner we find for t > 0, 
Y < 0, and zt = U,(t) 

(,1.38) 

It is easily shown that 

acp - = V,+f 
ax 

(1.39) 

In order to determine the dynamic fluid pressure at t = 0, we turn to 
Formula (1.17). After integration with respect to o and setting t = 0, 
we obtain 

3 
at = $ ‘VI 1) 

w (I- cos ah) cos ah sinh ky da dk + 
k (a2 + kl)coshkh 

-1 $ ‘1’2 \\ 
’ (1 - cos ah) cos ah coshJCY da dk _ 

(a2 + ,$+&&,, 
0 

- $ ‘1’2 
” 

!  

(t - cos ah) ksinhk (Y + h) 

\ (a2 + k2)(kgsi&kh f h”cosh/ih) 

cos ah - - 1 
coshkh 

da dk -AV,Y -If,“- V,?- 
d 
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2 Vl 
co (1 - cos ah) -- 

n s ua (h sin UY + V,a cos UY) da (1.40) 
0 

At first we carry out the double integration in (1.40) with respect 
to a in the first integral, and in the second and third double integrals 
we integrate first with respect to k. We find at t = 0, y = 0, and n = 0 
that 

(1.41) 

i2pv1vz 

SiJe 17 (Y + h)lhl 
r (r, p)cosh-( 

- XV,Y - v,2 - v,2 

Note that in the calculation of G'+/dy we integrate all double 
integrals with respect to k first. Integration yields 

(1.42) 

2) Now let us study the dynamic pressure on the dam caused by its im- 
pulsive action on the liquid. Let us assume that 

V (t) = Voe-ct (1.43) 

lhus, actually, after the change of X to E Formulas (1.12) to (1.19) 
hold also for this case. Note that in the evaluation of the integrals 

Fig. 4. Fig. 5. 

S,, S,, S, and S, the two cases are different from each other, since in 
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this case the equation Kg sinh (kh) + c2 cash (kh) = 0 has an infinite 
number of roots y,', where n = 1, 2, 3, . . . . which lie on the imaginary 
axis, as shown in Fig. 4. 

To calculate R,* we shall choose the same auxiliary functions and 
integration contours, only this time in Expressions (1.25) and (1.26) X 
will be replaced by [. Contour (1) lies in plane 2 (Fig. 4), and contours 
(2) and (3) lie in plane 2'; which is related to plane 2 by the mapping 
of (x'~ y') onto (- y'j x') and a 90° clockwise rotation. Note these pro- 
perties of the integrands, and after integration we have 

$ 

(1.44) 
F, (2’) dz’ = 2Rz* + iN, + iN, - L*e+ + fl* (a, Y, t) = 0 

(112 

$ 
F, (z’) dz’ = 2N, + 2N, + HI - iL* (eEt - e-t!) + fz* (a, Y, t) = 0 

(2) 2’ 

4 
F, (2’) dz’ = - i2Rz* + H,+ iL* (et1 + e-cl) + f3* (a, Y, t) = 0 

(3) 2’ 

where N, and N, are the same symbols as in (1.30) except that X is re- 
placed by [ 

( r W,? 6) = m’2 + (1 + dz) ha, 

which is obtained by means of integration over 
centers at the points y,', whose radii tend to 

R,* is found from the 
appropriate integrations 

system of equation (1.44). After a series of 
we obtain 

the small circles with 
zero. 

%J O” cm lTfn (Y + h) / hl 
at= 2&h‘v’, 21 7 

O” sin 1~‘~ (Y + h) / hl 
tl=l Tn r cl-,‘1 4 ax T,’ 

e-u - 2ahV,V, 2 r (T,n, a) cos r , e+- 
n=1 73 

- EV’,Ye+ -(V22 + Vz2)e-*Ef - U,g(l -e -5') (1.45) 

m sin IT,’ (Y + h) / hl 
2 = 2ahV, 2 

n=l I- h,’ * 4 cos T’n 
e -El + V,e-51 !!!I = V e-S1 

ar l 

for t > 0, y < U,(t), X = U,(t). 

For the time t = 0 we have for y < 0, x = 0 
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acp O” sin IT,’ (Y + h) I hl 
-= 
at 2ohV,V, 2 r &,, Q) cos r I -EY2y -1.‘,2-v22 

m=1.3 n=1 n 

- = 2ahV, 2 acp O” sin 1~~’ (Y + 4 / hl 
r h’p. 4 cos T’n + v*, (3 

aY -az = Vl (1.46) 
n=l 

2. Now we shall study the problem of the dynamic fluid pressure act- 
ing on a dam, which depends on the initial conditions 

(2.1) 

and the boundary conditions 

%J -=VV,sinot (V,=VOc0s6) at r=--Ulcosot ax (U, = uo cos 6) (2.2) 

aq -=V,sinot (V1=Vosin6j at y=--h-U2cosot 
aY 

(2.3) 
(U,= Uosin6) 

g$+gz =o at y=- u2cosot (2.4) 

Here V,, and U, are the amplitudes of the velocity and the displace- 
ment of the vibrating earth surface. 

Let us choose the following form of the velocity potential +(L, y, t) 
which satisfies hq5 = 0: 

(2.5) co 
fp (s, y, t) = sin tit [B (k) cash 1~ (Y + h) + C (k) sinh ICY] cos kX dk + 

+r.A (a) sin aYe-a”da) + rD(k) cash k(Y +h)coskXsinM2dk (~q~~::~~~~) 
0 0” 

Here the functions A(a), B(k), C(k) and D(k) are arbitrary. 

With the aid of the Fourier integral, using conditions (2.1) to (2.4), 
we find 

Lo - 22 (l-;yaW, D(k) =- + B (k), 11/1 = ‘I/kg tanh kh 

O” (I- cos ah) cos ah 
C(k)=;f;s;kh -$\ 

(a2 + k2) k co& kh 
da 

V-6) 
0 



Hydrodynamic pressure on a dam 1073 

(kg sinh kh - ~2 cash kh) B(k) + kg C (k) = - -$i $$-$ da 
0 

Differentation of 4(x, y, t) with respect to t for x = - Cl, cos ot 
yields 

aq 4v1 O3 
at= It2 - 11 (;;;;;fj;~;$, (V,k cash ItI- sin2 02 - w cos wt sinh kY) da dk + 

0 

+ $- g lw (8, - So) -v, (S, - S,)] -j- u,g (cos wt - 1) + WVJ cos wt - 

-Vv,* sincot + G\ (l-c$'h) [ocosotsinaY j (2.7) 
i, 

+ a sin’ wt (V, sill aY - V2 cos aY)] da 

Here 

s, = coswt[~(a, k)cosh k(Y +- h) da dk 
0 

8, = IQ(a, k) cash k(Y + h)cosMtdadk 
0 

S, = sinsot fl Q (a, Ic) k sinh k (I’ -j- h) da dk 
0 

co 

S, = w sin wt 
SC s?iFQ( a, k) k sinh k (Y + h) da dk 
d 

Q (a, k) = (I- cos ah) (cos ah - cash kh) / (a2 + k?) x 

x (kg sinh IA - W’ cash kh) cash kh 

It should be noted that in the computation of the integrals S, and S, 
we first integrate with respect to k, and all remaining double integrals 
at first with respect to a. In the process of computing S, we analyze 
the integral m 

T* = -- 

s 

coshk (Y + h) cos Mt dk 

(a2 + k2)(kgtikh - oh,hkh)coshkh 
0 

(2.8) 

Let us take three auxiliary functions, similar to (1.26), when A* is 
replaced by - o*. Here the equation kg sinb (kh) - ti* cash (kh) = 0 has 
an infinite number of imaginary roots yn which fall onto the segments 
shown in Fig. 5, and two real roots. 

We choose integration contours, as shown in Fig. 3, such that contour 
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(1) lies in plane 3 (Fig. 5), and contours (2) and (3) lie in plane 3', 
which is obtained from plane 3 by the mapping of (n', y') onto (-y', x') 
and a 90' clockwise rotation. Ey the theorem of residues we have 

# 
F, (2’) dz’ = 2T* - iNQ - iN, + K,* -K,* + fl* (a, Y, t) = 0 

(I)3 

4 
FB(z’)dz’ = 2lV, + 2iV, + i2K,* +H, +fz*(a, Y, t) = 0 (2.9) 

(113’ 

$ 
F, (z’) dz’ = i2T* - i2K,* - iK1* + H, + f3* (a, Y, t) = 0 

(3) 3’ 

where N, = - N,, N, = - N,, but instead of X2 we have - o*, 

I-’ CT,, Q) = rs2+ (I - Qh)Qh, r (I’,, 0) = rn2 - (1 - Qh) Qh, Q=W"/iT 

where K,* is obtained by means of integration over the small semicircles 
whose centers lie at the points ya, and whose radii tend to zero (Fig.5). 

From the system (2.9) we find 

T*= _ J+ ,L2 Yph[T,(Y t h) / hl sin C& 
(a2h2 + ‘r,“) 1 (T,, Q)--h 2 -rs + I*(% y, t) (2.10) 

After substitution of (2.10) into the expression for S, and integra- 
tion with respect to a we obtain 

In a similar fashion we find 

s,=$Qh 
SinhIT, 0’ + h) / hl 

I’ CT,> Q )coati~~ 
sin2wt 

(2.11) 

(2.12) 

After evaluating the remaining double integrals and substituting them 
into (2.7) we have for t > 0, Y < 0, x = - U, cosot 

NJ O” COS [T* (Y + h) / hl 
at= 2oQh?V, 2 

n=l r,r h,v Q) ~0s r, 
cos wt + 

(2.13) 
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co sin lm(Y +h)lhl 
+ 2Qh‘V,Vz 2 n=l r Cr,v Q) ~0s rn 

sin20t- 

- “mQh*T’, 
c-h[T, (y + h) / hl 

r,l' (I',, Q, cod, -rs 
sm wt - 

sinh[‘r, 
QhV,V, 

(y + h) ih] 

I' (~rv Q) cash 'rs 
sin2ot + 

-j- 0V.J cos ot - U,g (1 - cos cot) - (V,” -t Vz2) sin2 ot 

For t > 0, Y < 0, x = - II, cos ot we find 

amy. y, sin [m(Y + h)/h] 
=--- 

dy 2QhV, h 
1,=1 1‘ (r,,, 0) ~0s T,, 

sin wt + 

sinhlr,(Y+h)/hl 
$ 2Qhl’, -- 

r (+rss Q, cash r, 
cos ol $ V,sinot 

We know that 6'$/ax = V, sinot. For t = 0, n = - II, we have 

ag “v, g s2Yg+wl/2y 
dl= h 

rn=l, 3 

(2.14) 

(Z.15) 

When we denote the dynamic fluid pressure by p* and the fluid density 
by p we obtain the formula 

Let us use p* in the form pl* + p2*, i.e. p* = pl* + pz*, where pl* 

denotes the set of components which does not contain the factor V,, and 

p2* represents the remaining components. Formulas (1.37) and (1.38) show 
that pl* grows rapidly when C$ and 7 grow and [ + 11, because then in 
cash (y) = cash (p) cos q - i sin (q) sinh (p) the value of p + 0 and 
4’ 1/2 77. 

It follows from Formula (1.45) that in this case pl* grows rapidly 
with a growing t, because then y,,'- -f l/2 rr. Then the pressure reaches its 
maximum value at the time when the moving liquid meets with the instantly 
stationary dam. It can be seen from Formulas (2.13) and (2.14) that in 
this case pl* 

l/2 ?7. 
grows rapidly with an increase of o, because then yn -f 

It follows from the results obtained that vertical oscillations of 
the earth surface exhibit a significant influence on the loading of the 
dam during a destructive as well as during a strong earthquake. Actually, 
there may be some relations U202 > g, U2t2 > g, U2q2 >, g or U2h > g, 
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and consequently pz* can be larger than the static pressure p” = p gY. 
The pressure pl* can also exceed the value of p” for some given 17, 6, o. 
‘Ihe formulas obtained above are useful for the construction of individual 
graphs of the distribution of the dynamic fluid pressure along a dam. 

‘Ihe problem of the dynamic fluid pressure on a dam which is caused by 
its vibrations according to V = V,, cos wt was discussed in [ 4 I . 
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